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Fragment Impact Toolkit (FIT) 

Daniel Shevitz, Brian Key, Daniel Garcia 

Los Alamos National Laboratory: P.O. Box 1663, Los Alamos, NM 87545 

 

Introduction 

The Fragment Impact Toolkit (FIT) is a software package used for probabilistic consequence evaluation 
of fragmenting sources. The typical use case for FIT is to simulate an exploding shell and evaluate the 
consequence on nearby objects. FIT is written in the programming language Python and is designed as a 
collection of interacting software modules. Each module has a function that interacts with the other 
modules to produce desired results. 

 

Design Philosophy 

The design philosophy of FIT is that there are enormous uncertainties in fragmentation problems. 
Numerically generating fragmentations of objects from first principles is computationally expensive and 
subject to variables that are unknowable such as the exact microstructure of the object or defect 
locations. The effective result is that from a realistic perspective the fragmentation itself may as well be 
considered random, albeit with certain known statistical properties, such as the mean fragment size, the 
fragment distribution, etc.  

FIT uses a Monte Carlo approach to simulate fragmentation problems. By avoiding first principle 
simulations FIT can run orders of magnitude faster.  FIT uses empirical inputs such as fragment size 
distribution and velocity to generate many fragmentations and evaluate their consequences. In essence, 
FIT uses either real data or first principles simulation as initial conditions for running many simulated 
case breakups.  

FIT is written with a flexible class structure that allows the user to easily customize all aspects of the 
simulation. A simulation typically has the following stages:  

1. source fragmentation, 
2. assigning initial conditions to the fragments,  
3. transporting them through space,  
4. defining target geometries,  
5. checking for impacts of the fragments on the targets,  
6. screening those impacts for things such as sufficient kinetic energy or proximity in space 

and time,  
7. post processing the results to compute images, movies, or graphs.  
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Example FIT simulations and results are shown in Figures 1 and 2. 

Figure 1.  Example FIT Simulation.  Source fragmentation (cylinder) and targets (boxes) 

 

Figure 2. Example Post Processed Results 
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Users are not locked into any particular physics. Running a FIT simulation consists of writing a driver 
script that does whatever the user requires. FIT consists of the following primary classes: Node, Tree, 
Fragment, Fragmentation, Shape, and Simulation. What each of these classes does and how they inter-
operate will be the subjects of the following sections. 

 

Classes  

    Node Class: 

A Node is an abstract entity that corresponds one to one with fragments. In other words, each fragment 
has a corresponding Node in a binary tree. The use of binary trees will be explained in the next section. 
Nodes (unless they are leaf nodes) have two children which are the sub-fragments that this fragment 
splits into. Each Node has a weight which will correspond to its mass, and a “fulcrum” which is used to 
describe how much mass should be in either of the child fragments. The fulcrum will also be explained 
further in the next section. 

    Tree Class: 

Just as with Nodes and Fragments, Trees and Fragmentations correspond to abstract and concrete 
representations of the fragmentation. Trees describe the relationships between the nodes, and 
fragmentations correspond to physical positioning of the fragments. One of the primary realizations of 
the FIT code is that fragmentations can be described both conceptually and mathematically by binary 
trees. The conceptual idea is that two fragments can be combined into a “super fragment”. Those super 
fragments can be combined, and that process can be continued until all we are left with is the original 
shape. This ignores stretching of the fragment and shape distortions which are obviously present, but 
when we consider damage assessment we really only care about the mass and velocity, i.e. its kinetic 
energy. The shape matters less to us. In this way, the original shell can be considered tiled by the 
fragments.  

This process as described presently can always be constructed for a thin shell. While the binary tree 
uniquely determines a fragmentation it should be noted that the converse is not true. There are many, 
many ways to pairwise combine fragments in a hierarchy.   

There are so many uncertainties in fragmentation that FIT takes a high level approach and assumes that 
the shapes of the fragments do not matter. What matters is the fragment size distribution and 
velocities. To simplify the fragment generation process, FIT creates rectangular fragments because they 
are very easy to tile flat shapes. The actual fragmentation is always a rectangular patch which could in 
principle be a small tangent plane to a complex shape, but in practice up to this point, we have always 
just wrapped the rectangle around a cylinder to represent the source. The notion of a binary tree can 
always be applied to the fragmentation of a thin shell. It would be useful to be able to map the 
fragmented rectangle onto more complex shapes, but unfortunately this is impossible, because more 
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complex mathematical shapes cannot be mapped in a way that preserves area, hence the fragment size 
distribution would get distorted. 

Trees start with a fragment size distribution. Typically this distribution is usually specified in terms of 
mass. Converting from the fragmented rectangle described in the preceding paragraph and mass is 
straightforward using the relationship the thickness times area times density equals mass. To 
acknowledge that the fragment distribution could be specified in terms of either area or mass, we use 
the neutral term “weight” to describe the distribution. Fragment weights are sampled from the specified 
distribution until the weight exceeds the desired total. For instance, in the typical use case, fragment 
masses are sampled until the total mass exceeds the desired mass of the source. The last fragment 
weight is then adjusted to exactly total the desired weight. This last step is a little ad-hoc, but presents 
no systematic bias to the result especially considering that most fragmentations have hundreds or 
thousands of fragments, each a small fraction of the total.  

The question becomes where to put the fragment in the original rectangle. This is where the “fulcrum” 
comes into play. The obvious thing to do would be to flip a coin at each node in the tree until we come 
to a new leaf. The problem with this method is that due to the Central Limit Theorem [1], as we sample 
many fragments on average half will go to the left and half will go to the right and this keeps happening 
recursively. This leads to a biasing of the fragmentation so that there is split down the middle, and then 
each of the halves is again split down the middle, and so on. As the fragments travel through space this 
leads to artifacts including artificial gaps in the fragment field. To prevent this from happening, FIT uses 
a slightly different approach. At each node we sample a distribution, typically a uniform distribution 
between two numbers less than one, for example [.3, .7]. This is desired fraction of the weight to keep 
on each side of the division of the two sub-fragments. A conceptual way of thinking about the fulcrum is 
on a child’s teeter-totter we always add the weight to the high side, which tends to improve the 
balance. By making the fulcrum a random number, we prevent systematic or reproducible artifacts. The 
idea is that for each fragment weight we progress down the tree, at each node deciding to add the 
fragment to the left or right depending on whether the cumulative weight below the current fragment is 
above or below the desired fulcrum. In aggregate we end up with a nearly balanced tree (for a visual 
image, think of a child’s mobile) where the balance points are determined by the fulcrum.  

    Fragment Class: 

The relationship between a node and a fragment is simple and straightforward. The Fragment class 
appends information to the Node class that corresponds to the real fragment in three dimensional 
space. In addition to the weight (typically mass), the fragment has a birth position, an initial velocity, and 
an initial time when it starts moving. 

    Fragmentation Class: 

Just as the Fragment class turns an abstract Node into a physical entity, the Fragmentation class turns 
the Tree class into a physical manifestation. The Fragmentation class has methods for iterating over the 
fragments and performing various operations including assigning the positions, transporting the 
fragments along their ballistic trajectories, intersecting them with targets, persisting the data, etc. There 
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is very little implemented in the Fragmentation class. Mostly the Fragmentation class keeps track of 
global constants, such as the size of the initial shell. In addition, the Fragmentation class keeps track of 
all the fragments and iterates over them. 

    Shape Class: 

Even though a single simulation may use two cylinders, one for the source and one for the target, the 
representations of source and target are totally different. The source has been extensively discussed and 
consists of a collection of fragments. The various Shape classes and subclasses (Shape, PlanarPatch, 
ConicSectionPatch, Ellipsoid, etc.) are used to represent targets. The targets are described analytically. 
The reason for this is that with an analytic representation for the targets, the intersections of fragments 
and the target in its entirety can likewise be computed analytically at a dramatic savings in 
computational cost. 

At this point we need to talk about what it means for a fragment to hit a target shape. In FIT, we 
typically (although it’s not strictly required, but much more efficient) assume the fragments travel in 
straight lines starting from their center of mass and moving in the direction of their initial velocity. We 
neglect the force of gravity, tumbling, air resistance, etc. In other words, we assume that the target is 
sufficiently close to the source that the flight of the fragment is ballistic. The reason for this assumption 
is that this allows an analytic solution of the intersection. With these assumptions, if we consider the 
motion of the fragment through time, the fragment’s trajectory is assumed to be a line parametrized by 
the flight time. A fragment impact is considered to be an intersection of the fragment trajectory line 
with the target shape. In an intersection, we need to find the intersection time and make sure that it is 
positive. A negative time would correspond to going backward in time as would happen if the target 
were on the opposite side of the source. These negative time solutions need to be discarded. 

Typically realistic targets are complicated assemblies of multiple shapes. The Shape class is actually a 
container for other Shapes. The idea is that we build up more complex shapes out of simpler shapes. 
Each shape keeps track of where it is in space and any constraints that must be satisfied for a fragment 
to hit. For example if the shape is half a sphere, then the shape needs to know which half is excluded.  

Shapes are created as the solution to equations. There are two types of primitive shapes: PlanarPatch 
and ConicSectionPatch. Mathematically, a plane can be described as the set of points satisfying: 

𝑁𝑁𝑇𝑇𝑥𝑥 = 𝑐𝑐, 

where 𝑁𝑁 is the normal vector to the plane and 𝑐𝑐 is how far up normal vector the plane sits. In general 
every line intersects every plane somewhere. This is no longer true if the planar patch has finite size. 
Then we need to make sure that the intersection point satisfies the constraint of actually hitting within 
the finite domain. All this can be done analytically. The trajectory of the fragment is represented by the 
equation: 

𝑥𝑥 = 𝑥𝑥0 + 𝑣𝑣0 ∗ 𝑡𝑡, 
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where 𝑥𝑥0 is the birth position of the fragment and 𝑣𝑣0 is the birth velocity of the fragment and 𝑡𝑡 is time. 
Therefore the intersection of the fragment with the plane can be written as the solution (in 𝑡𝑡) to the 
simple equation: 

𝑁𝑁𝑇𝑇(𝑥𝑥0 + 𝑣𝑣0 ∗ 𝑡𝑡) = 𝑐𝑐, 

which is a simple linear equation in 𝑡𝑡. Then we need to check whether the point 𝑥𝑥0 + 𝑣𝑣0 ∗ 𝑡𝑡 satisfies the 
constraints of the finite size. 

When working with composite shapes, it is frequently easier to define the target in a convenient 
reference frame. For example, define the plane as having a normal vector in the z-direction. We can 
then rotate and translate the plane to wherever we need. The convention we use is that these 
transformations are parametrized by the formula: 

𝑥𝑥 → 𝑅𝑅𝑧𝑧(𝜑𝜑)𝑅𝑅𝑥𝑥(𝜃𝜃)𝑥𝑥 + 𝑥𝑥0. 

In words, we first rotate around the x-axis by 𝜃𝜃 degrees. Then we rotate around the z-axis by 𝜑𝜑 degrees 
and finally we translate by 𝑥𝑥0. This may seem like an over simplification but for objects with axial 
symmetry, this is in fact maximally general. Transformations of this form can be composed to form 
another transformation of the same class. The shapes defined in FIT keep track of their composite 
transformations. The preceding discussion can be slightly modified to account for the added complexity 
of the transformation and the intersection can still be computed quickly as the solution to a linear 
equation in 𝑡𝑡. 

The second type of primitive shape is encapsulated in the ConicSectionPatch class. This class is quadratic 
in 𝑥𝑥 and is represented by solutions to the equation: 

𝑥𝑥𝑇𝑇𝑄𝑄 𝑥𝑥 = 𝑐𝑐, 

where 𝑄𝑄 is a quadratic form (a symmetric 3x3 matrix). This generalization gives a surprisingly rich set of 
additional shapes depending on the particular 𝑄𝑄 we chose. The most useful shapes we can generate by 
varying 𝑄𝑄 are cylinders, spheres, and ellipsoids. The discussion of fragment impact proceeds similarly to 
that for the PlanarPatch except that the intersection: 

(𝑥𝑥0 + 𝑣𝑣0 ∗ 𝑡𝑡)𝑇𝑇𝑄𝑄 (𝑥𝑥0 + 𝑣𝑣0 ∗ 𝑡𝑡) = 𝑐𝑐 

is now a quadratic equation in 𝑡𝑡, which can also be solved analytically. To determine if an intersection 
exists, one only needs to compute the discriminant of the resulting quadratic equation and see if it is 
greater than zero. The discussion of constraints and transformations is identical to the PlanarPatch.  

Given these two primitive shapes, we can approximate a surprisingly wide range or shapes and scenes as 
shown in Figure 1. Shapes are composed of other shapes. We can use a single planar patch to represent 
a witness plate, or a set of patches to represent a system of witness plates. We can combine a cylinder 
with a circular bottom and ellipsoidal cap to represent a piece of artillery. Combining a cylinder with two 
ellipsoidal caps and trapezoids for wings and tail assemblies gives us an airplane, shown in Figure 3. 
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These shapes can themselves be combined to create more complicated scenes or theaters. The 
possibilities are limitless.  

 

Figure 3.  Airplane made from compound primitive shapes 

 

A final note on complex targets is that a fragment could potentially impact multiple patches and we 
need a way to disambiguate these to determine the actual impact. The final determinant is simply the 
physical impact corresponds to the lowest positive impact time. In other words, the first impact is the 
actual impact.  

    Simulation Class: 

The Simulation class is a very simple wrapper that orchestrates operations that are typically done 
together, such as fragment generation, assignment of positions and velocities, setting up the target 
geometry, computing impacts, and finally post processing.  
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One of the advantages of FIT is that post processing is implemented by scripting and therefore can be 
made completely customizable. The simplest post processing is to run a single simulation and look at the 
results. FIT has built in routines to convert fragmentations into VTK files which is a standard graphics file 
format that allows viewing in software such as Paraview [2] and VisIT [3]. Viewing the fragmentation 
allows the user to see the initial fragmentation of the source, which fragments impact the target, 
viewing them at either the initial positions or where they impact the target, see Figure 4.  

 

Figure 4.  Fragment Impacts on Target 

 

Similarly movies can be made of the explosion of the fragment field moving away from the source as 
shown in Figure 5. All of these types of results help provide a sanity check on any statistics that might 
ultimately be generated. 
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Figure 5. Moving fragment field and fragmentation  

 

Because of intrinsic unknowns, fragmentation is considered a random process. While any single 
predicted fragmentation is possible, the likelihood of that fragmentation will be essentially zero. To 
counteract the randomness, FIT is typically used in a Monte Carlo fashion. Many fragmentations are run 
to simulate shell fragmentation. Depending on the complexity of the problem, many can mean 
hundreds, thousands, or potentially millions of simulations.  

Assessing probabilities is usually a matter of counting outcomes. We estimate the probability of an 
event by simple counting. The probability estimate is defined as the number of times an event occurs 
divided by the total number of trials. The event can be defined by the user. The simplest event to 
consider is: did the target sustain an impact or not? This probability would estimate the question of 
when the target survived unscathed or not.  

One aspect of FIT not discussed up to this point is the concept of filtering. Filtering is when we remove a 
fragment from an analysis. There are many reasons why we might want to filter a fragment. We will list 
three here. The first is the case of shielding. A fragment may be stopped by another element of the 
scene before impacting the target. This is actually implemented as a compound target, but only impacts 
on the desired patch are counted. A second type of screening is even if the fragment impacts the target, 
it may not have sufficient size or kinetic energy to do any damage. Conceptually, if a piece of dust hits 
the target it will not do any damage. The user can control the threshold for considering an impact 
sufficiently large to count. The third and most subtle form of filtering implemented at present is 
implemented when the target is an explosive. It is of interest to count how many impacts can ignite the 



 UNCLASSIFIED LA-UR-17-XXXX 

10 
UNCLASSIFIED 

explosives in the target. First, the fragments need to have sufficiently large kinetic energy to light the 
explosive but there is a second requirement. The first impact that ignites the target creates a detonation 
wave in the explosive. If the second fragment hits the target but is behind the detonation wave of the 
first impact, then it is of no consequence because the explosive is already lit at the point of impact, 
hence such impacts can be ignored. 

 

Conclusion 

FIT is a set of interacting modules implemented as Python classes. These modules are used to represent 
different physics in consequence evaluation. Modules include case breakup with a known fragment size 
distribution, assignment of initial conditions including fragment mass, velocity, and time of flight. FIT has 
modules for implementing the flight of the fragments including filtering which removes fragments for 
reasons such as hitting shields, creating complex target geometries composed of patches of planes and 
3D generalizations of conic sections. Simulations can then be defined as scripts to view the 
fragmentations and consequences in a graphics viewer or to compute probabilities to inform policy 
makers. Acting together the classes of FIT can simulate many different kinds of impact assessment 
problems and rapidly give answers that would otherwise be impossible. 
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